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Abstract. 

 

This paper describes a class of decision procedures that we have found
useful for efficient, domain-specific deductive synthesis, and a method for integrat-
ing this type of procedure into a general-purpose refutation-based theorem prover.

 

We suggest that this is a large and interesting class of procedures and show
how to integrate these procedures to accelerate a general-purpose theorem
prover doing deductive synthesis. While much existing research on deci-
sion procedures has been either in isolation or in the context of interfacing
procedures to non-refutation-based theorem provers, this appears to be the
first reported work on decision procedures in the context of refutation-
based deductive synthesis where witnesses must be found.

 

1 Introduction

 

This paper describes a class of decision procedures that we have found useful for
efficient, domain-specific deductive synthesis, and a method for integrating this type of
procedure into a general-purpose refutation-based theorem prover. These procedures
are called 

 

closure-based ground literal satisfiability procedures. 

 

We suggest that this is
a large and interesting class of procedures and show how to integrate these procedures
to accelerate a general-purpose theorem prover doing deductive synthesis.  We also de-
scribe some results we have observed from our implementation.

Amphion/NAIF[17] is a domain-specific, high-assurance software synthesis sys-
tem. It takes an abstract specification of a problem in solar system mechanics, such as
“when will a signal sent from the Cassini spacecraft to Earth be blocked by the planet
Saturn?” , and automatically synthesizes a FORTRAN program to solve it. Amphion/
NAIF uses deductive synthesis (a.k.a proofs-as-programs [6]) in which programs are
synthesized as a byproduct of theorem proving. In this paradigm,  problem specifica-
tions are of the form , where  and  are vectors of variables. We are
only interested in constructive proofs in which witnesses have been produced for each
of the variables in . These witnesses are program fragments.

 Deductive synthesis has two potential advantages over competing synthesis tech-
nologies. The first is the well-known but unrealized promise that developing a declara-
tive domain theory is more cost-effective than developing a special-purpose synthesis
engine. The second advantage is that since synthesized programs are correct relative to
a domain theory, verification is confined to domain theories. Because declarative do-
main theories are simpler than programs, they are presumably easier to verify. This is
of particular interest when synthesized code must be high-assurance. 
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 The greatest disadvantage that general-purpose deductive synthesis systems have
is that systems based on theorem proving

 

1

 

 are almost always unacceptably inefficient
unless the domain theory and theorem prover are carefully tuned. This tuning process
consists of iteratively inspecting proof traces, reformulating the domain theory, and/or
adjusting parameters of the theorem prover, a process that usually requires a large
amount of time and expertise in automated reasoning.

In order to assist in constructing efficient synthesis systems, we are developing a
tool, Meta-Amphion [10], the goal of which is: given a domain theory, automatically
generate an efficient, specialized deductive synthesis system such as Amphion/NAIF.
The key is a technique, that is under development, that generates efficient decision pro-
cedures for subtheories of the domain theory and then integrates them with a general-
purpose refutation-based theorem prover. Some success has been achieved with this au-
tomated technique [14]. However, significantly more research is required to enhance the
automated process of designing decision procedures to replace subsets of  a theory.

However, we have found that deductive synthesis systems can be manually tuned
very effectively by manually performing the process we are trying to automate. Hence,
one can accelerate a deductive synthesis system by manually inspecting a domain theory
and identifying subtheories for which we already have or can construct replacement de-
cision procedures. This technique has, in our experience, been far easier and has often
produced more efficient systems than the traditional technique of inspecting proof traces
and tuning parameters. For instance, Figure 1 summarizes our experience with the Am-
phion/NAIF system. It is a graph of the performance of three different versions of Am-
phion/NAIF. It shows the number of inference steps required to find proofs as the input
problem specification size (number of literals) grows for an un-optimized system, a tra-
ditionally hand-tuned system, and a system tuned by replacing subtheories with decision
procedures (Tops). Figure 2 compares the traditionally hand-tuned system vs. the sys-
tem tuned with decision procedures (Tops).

While much existing research on decision procedures has been either in isolation
[11][16][5] or in the context of interfacing procedures to non-refutation-based theorem
provers [13][2], we are unaware of any work done on decision procedures in the context
of refutation-based deductive synthesis where witnesses must be found. This paper pre-
sents a decision procedure interface to a theorem prover with several inference rules in-
cluding binary resolution and paramodulation. These inference rules have been
extended to enable the class of ground literal satisfiability procedures to be integrated
with the theorem prover in a straightforward and uniform manner. Procedures can be
plugged in on a theory-by-theory basis, allowing the theorem prover to be tailored to
particular theories. We show that when these procedures have the additional property of
being 

 

closure based

 

, they can be used to produce witnesses for deductive synthesis. The
class of ground literal satisfiability procedures is such that the witnesses produced are

 

1. Amphion/NAIF utilizes a refutation-based theorem prover. We initially con-
sidered using Prolog; however, the domain theory required extensive use of equality,
making the Prolog implementations available at the time inappropriate.



 

typically straight-line program fragments that are incorporated into larger programs pro-
duced by the general-purpose theorem prover.

 

Figure 1: 

 

A comparison of the performance of three different versions of Amphion/NAIF.

 

Figure 2:

 

 A closer comparison of the two tuned versions of Amphion/NAIF.

 

Section 2 introduces 

 

separated clause notation

 

, the notation used by our extended
inference rules. The motivation for these rules is that they enable decision procedures to
be integrated with the theorem prover and used in place of subsets of a theory. The in-
tegration of procedures requires procedures that compute satisfiability and procedures
that compute entailment. Section 3 describes procedures for testing satisfiability in a
theory. Section 4 describes decision procedures that test entailment in a theory and that
compute witnesses for deductive synthesis. The example used in Sections 2-4 is in the
domain of 

 

LISP

 

 list structure and involves a decision procedure originally developed by
Nelson and Oppen. This is used for simplicity of presentation. Then in Section 5, a de-
cision procedure from the Amphion/NAIF domain is described. Section 6 describes the
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implementation of the interface and the results of using procedures like the one de-
scribed in Section 5 for deductive synthesis in Amphion/NAIF. Finally, Section 7 dis-
cusses related work and concludes.

 

2  Separated Inference Rules

 

This section describes our extension to the inference rules in the SNARK [17] the-
orem prover enabling the use of decision procedures. The basic idea is that all clauses
are separated into two parts: a part that is reasoned about by integrated decision proce-
dures and a part that is reasoned about by SNARK. First, 

 

separated clause

 

 form is de-
fined, and then the separated inference rules are described. SNARK has inference rules
resolution, hyperresolution, paramodulation, and demodulation. The overall extension
has been accomplished by extending each inference rule in a uniform manner. This pa-
per only discusses separated binary resolution and separated paramodulation, but the
other rules are extended similarly. 

Separated binary resolution is similar to resolution with restricted quantifiers or

 

RQ-resolution

 

 [3]. Recall that, given a first-order theory 

 

T

 

 and a first-order formula 

 

Φ,

 

we prove 

 

T

 

|=

 

Φ

 

 by refutation by showing that 

 

 

 

is unsatisfiable. Assuming that

 

T

 

 is satisfiable, this amounts to showing that no model of 

 

T

 

 is a model of 

 

¬

 

Φ

 

. 

 

The gen-
eral idea of our binary resolution rule (as well as RQ-resolution) is as follows. If there
is a method for determining satisfiability of a formula relative to a theory 

 

,

 

we prove 

 

T

 

|=

 

Φ

 

 by showing that no model of 

 

T

 

1

 

 

 

can be extended to a model of
, where 

 

T

 

2

 

=T-T

 

1

 

. Our work is an extension of Burckert’s in two ways. First,
our resolution rule differs from RQ-resolution because it allows function symbols to ap-
pear in 

 

T

 

2

 

 

 

and 

 

¬

 

Φ

 

. In practice, this is extremely important because it drastically reduces
the number of potential resolutions that must be considered. Second, we have extended
the separation idea to inference rules other than resolution.

The separated rules work with clauses that are 

 

separated relative 

 

to a subtheory,
called a 

 

restriction theory

 

. 

 

Definition 2.1 (Separated Clause) 

 

Let 

 

L

 

 be the language of a theory 

 

T

 

, a first-order the-
ory with equality. We treat equality as a logical symbol, so = is not in 

 

L.

 

 Let  be
the language of . A clause 

 

C

 

 with the following properties is said to be 

 

separated
relative to T

 

1

 

:
1. 

 

C

 

 is arranged into 

 

C

 

1

 

∨

 

C

 

2

 

, where both 

 

C

 

1

 

 and 

 

C

 

2

 

 are disjunctions of literals (i.e.,

clauses).
2. All the function and relation symbols in 

 

C

 

1

 

 come from 

 

L

 

1

 

 and all the function and

relation symbols in 

 

C

 

2

 

 come from 

 

L-L

 

1

 

.

Notice that 

 

C

 

1

 

∨

 

C

 

2

 

 can be written , where   is the negation of 

 

C

 

1

 

. Since 

 

C

 

1

 

is a disjunction of literals,  is a conjunction of the negations of the literals in 

 

C

 

1

 

. If
 is a clause separated relative to some theory,  is called the 

 

restriction

 

of 

 

C

 

 and 

 

C

 

2

 

 is called the 

 

matrix

 

 of 

 

C

 

. A set of clauses is separated relative to a theory if
each of the clauses in the set is separated relative to the theory.

Constant (0-ary function) symbols are not discussed in the definition of separation
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because they may appear in 

 

C

 

1

 

 or 

 

C

 

2

 

 regardless of which language they are in. As ex-
plained below, this is a property of the mechanism for passing information between the
matrix and the restriction of clauses as they are manipulated by our extended inference
rules. 

A clause is separated in two steps. In the first step, literals are placed in the restric-
tion or matrix of a clause based on their predicate symbol. In the second step, each non-
constant term 

 

t 

 

in the restriction whose head symbol is in 

 

L-L

 

1

 

 

 

is replaced by a new vari-
able 

 

x

 

, and 

 

x

 

≠

 

t

 

 is disjoined to the matrix. Similarly, each non-constant term in the matrix
whose head symbol is in 

 

L

 

1

 

 is replaced by a new variable 

 

x

 

, and 

 

x

 

=

 

t

 

 is conjoined to the
restriction.

 

Example 2.1 

 

Suppose we have a theory 

 

T

 

1

 

 of 

 

LISP

 

 list structure whose non-logical sym-
bols are the function symbols

 

 head

 

, 

 

tail

 

, 

 

cons, 

 

and 

 

nil.

 

. Then the separation of the for-
mula 

 

tail

 

(

 

K

 

)

 

≠

 

nil

 

 relative to 

 

T

 

1

 

 is 

 

 

 

(

 

x

 

=

 

tail

 

(

 

K

 

))

 

⇒

 

(

 

x

 

≠

 

nil

 

).

Separated binary resolution computes a resolvant of two clauses, 

 

C’

 

 and 

 

C’’

 

, each
separated relative to a theory 

 

T

 

1

 

. This resolvant is also a clause separated relative to 

 

T

 

1

 

.
Informally, a resolvant is computed as follows. First, ordinary resolution is performed
on the matrices (right hand sides) of 

 

 C’

 

 and 

 

C’’

 

 to form the matrix of the resolvant. The
resulting substitution 

 

σ

 

 is used in forming the restriction of the resolvant which is the
conjunction of the restrictions of 

 

C’  

 

and 

 

C’ ’  

 

with the substitution 

 

σ

 

 applied. If the new
restriction is unsatisfiable in 

 

T

 

1

 

, the resolvant is 

 

true

 

 and, as a practical matter for reso-
lution refutation, can be discarded.

 

Definition 2.2 (Separated Binary Resolution)

 

 Let 

 

C’

 

 and 

 

C’’

 

 be variable disjoint
clauses separated relative to a theory 

 

T

 

1

 

. 

 

Let  and
, where 

 

Q

 

 and 

 

R

 

 are (possibly empty) clauses and 

 

n,p

 

≥

 

0

 

. If

 

l

 

1

 

 and  unify with most general unifier 

 

σ

 

 and  is sat-
isfiable in 

 

T

 

1

 

, the 

 

separated resolvant

 

 of 

 

C’

 

 and 

 

C’’

 

 is the separation

 

2

 

 of
 .

 

Example 2.2 

 

The third clause below is a separated resolvant of the first two clauses.

 

2. The separation of the resolvant does not have to be a separate step. However, 
it simplifies the presentation.
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 The literal 

 

z

 

≠

 

append(v,w) 

 

(in the first clause) is unified with 

 

x

 

1

 

=append(front(x

 

1

 

),y

 

1

 

)

 

(in the second clause) producing the unifier 

 

{x

 

1

 

←

 

z,v

 

←

 

front(z), w

 

←

 

y

 

1

 

}

 

. The matrix of
the resolvant is obtained as in ordinary binary resolution and the restriction is the result
of applying the unifier above to the conjunction of the restrictions of the two parents.
The resulting clause is separated, moving  

 

front(z)

 

 to the matrix.

 

Lemma 2.1 (Soundness of separated binary resolution) 

 

Let 

 

Ψ

 

 be a set of separated
clauses, and let 

 

ψ

 

 be a clause derived from two elements of 

 

Ψ

 

 by separated binary
resolution. If 

 

M

 

 is a model of 

 

Ψ

 

, 

 

M

 

 is a model of

 

 Ψ∪{ψ}

 

. 

 

Proof: 

 

Soundness follows immediately from the soundness of ordinary binary reso-
lution. The satisfiability check on the restriction of the resolvant is not necessary for
soundness of the rule overall. Rather, if the restriction of the resolvant is unsatisfi-
able, the separated clause is a tautology. []

 

Definition 2.3 (Separated Paramodulation)

 

 Let 

 

l

 

[

 

t

 

] be a literal with at least one occur-
rence of the term 

 

t. 

 

Let 

 

C’

 

 and 

 

C’’

 

 be variable disjoint clauses separated relative to a
theory 

 

T

 

1. 

 

Let   and ,
where 

 

Q

 

 and 

 

R 

 

are (possibly empty) clauses and 

 

n,p

 

≥

 

0

 

. If 

 

t

 

 and 

 

r

 

 unify with most general
unifier 

 

σ

 

 and  is satisfiable in 

 

T

 

1

 

, a 

 

separated para-
modulant

 

 of 

 

C’

 

 and 

 

C’’

 

 is the separation of 

where 

 

l

 

σ

 

[

 

s

 

σ

 

] represents the result obtained by replacing a single occurrence of 

 

t

 

σ 

 

in 

 

l

 

σ

 

by 

 

s

 

σ.

 

As with resolution, soundness of separated paramodulation follows from the
soundness of the ordinary paramodulation rule.

An ordinary resolution refutation of a set of clauses 

 

C

 

 consists of a sequence of
clauses where each clause is an element of 

 

C

 

 or is derived from two preceding clauses
in the sequence by binary resolution or paramodulation. An ordinary refutation is 

 

closed

 

when the empty clause, which we denote [], is derived. A 

 

separated refutation

 

 is a se-
quence of separated clauses derived using the separated rules. Unlike an ordinary refu-
tation, a separated refutation is not necessarily closed when a clause with an empty
matrix is derived. Instead, in general, there is a set of clauses
each of which has a separated refutation such that , where

 

 ∃

 

F

 

 is
the existential closure of 

 

F.

 

 A proof of this fact can be found in [Burckert91] where it is
also shown that this disjunction is finite so long as 

 

T

 

1

 

 is first-order (this is a consequence
of Compactness). Hence, a 

 

closed separated refutation

 

 is a separated refutation that
ends with a collection of separated clauses all of whose matrices are empty such that the
existential closure of the disjunction of their restrictions is a theorem of 

 

T

 

1

 

.
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Lemma 2.2 (Soundness of separated refutation) 

 

If the separation of a set of clauses

 

C 

 

has a closed separated refutation, 

 

C

 

 is unsatisfiable.

 

Proof: 

 

This result follows immediately from soundness of separated binary reso-
lution and separated paramodulation, and the fact that if a set of separated clauses is un-
satisfiable, so is the unseparated clause set. []

An inference system with ordinary binary resolution and ordinary paramodulation
is complete if reflexivity axioms are included. In order for a system including separated
versions of these rules to be complete, separated versions of congruence axioms for
some theory predicate and function symbols are added. An example of a predicate con-
gruence axiom is . Space does not permit a proof of the com-
pleteness of  separated resolution and paramodulation here. 

 [3] points out that for some restriction theories, closed separated refutations can
always be obtained by considering the entailment of  the restrictions of only individual
clauses. For instance, it is proven that if 

 

T

 

1

 

 is a definite theory, i.e., a theory that can be
written as a set of definite clauses, closed separated refutations are guaranteed for query
clauses whose restrictions contain only positive literals. This paper focuses on the case
where entailment of only single restrictions needs to be checked. When this is not the
case, getting a closed separated refutation requires an additional inference rule (such as
consensus [7]) or it requires decision procedures to be used in a more complicated man-
ner than presented here. Thus far, the simpler case has been sufficient in our work on
deductive synthesis. 

The definition of a separated clause often prevents the derivation of clauses with
empty matrices when terms that are not in the restriction language appear. These terms
keep getting separated back into the matrix. For instance in example 2.2 above because

 

front 

 

is in 

 

L-L

 

1

 

,

 

 

 

instead of substituting 

 

front(z)

 

 into the restriction of the resolvant,

 

v

 

≠

 

front(z) 

 

is disjoined in the matrix. In such cases, the matrix of a clause will end up
containing only literals of the form 

 

t

 

≠

 

x

 

 for some variable 

 

x

 

 and some term 

 

t

 

 in the lan-
guage 

 

L-L

 

1

 

 not containing 

 

x

 

,  Such a clause can be viewed as having an empty matrix
with the disequalities considered as substitutions for variables in the restriction. Our sys-
tem completes refutations by applying these substitutions to the restriction (rendering
the clause no longer separated) and then checking the entailment of the resultant restric-
tion with symbols in 

 

L-L

 

1

 

 

 

uninterpreted. This can be seen in the last step of the following
example.

 

Example 2.3

 

. Let 

 

T

 

LISP

 

 be a theory of 

 

LISP

 

 list structure with function symbols 

 

head
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tail

 

,

 

cons

 

, and 

 

nil

 

. Given the theory 
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we want to show that  is a theorem of 
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. In this
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theory, the functions 

 

front

 

 (which “computes”  all but the last of a list) and 

 

last 

 

(which
“computes”  the last element of a list) are constrained in terms of the functions 

 

append,
cons, 

 

and 

 

tail. 

 

Witnesses found in proving the theorem above can be viewed as synthe-
sized definitions of the functions 

 

front

 

 (a witness for 

 

y

 

1

 

) and 

 

last

 

 (a witness for 

 

z

 

1

 

) under
the assumption for an input list 

 

K

 

, that 

 

K

 

≠

 

nil

 

 and 

 

tail(K)

 

≠

 

nil. 

 

Note that we make these
assumptions here so as to focus on the witnesses found by a decision procedure. When
these assumptions are relaxed, the fragments generated by the decision procedure are
incorporated into recursive definitions of 

 

front

 

 and 

 

last

 

.

 

 

 

A refutation that is separated relative to 
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  is given below. Clauses 1-5 below
are the first three axioms above separated relative to 

 

T

 

LISP

 

. Note that these are the claus-
es of 

 

T-T

 

LISP

 

. The last two formulas above are axioms of 

 

T

 

LISP

 

 

 

and are needed only in
determining satisfiability and entailment of restrictions. Therefore, they do not appear
in the proof. We give as justification for step 10 “substitute.”  The clause of this step is
obtained from step 9 by treating the disequalities in the matrix as a substitution that is
applied to the restriction. Since the existential closure of the restriction of 10 is a theo-
rem of 

 

T

 

LISP

 

 (regardless of the interpretation of  

 

front

 

 and 

 

last

 

), the proof is finished. As
discussed in Section 4, the witnesses for 

 

front

 

 and 

 

last

 

 are obtained from the conse-
quences of the restriction of step 10.

 

1 Given

2 Given

3 Given

4 Given

5 Negated conclusion

6 resolve 4 and 5

7 resolve 1 and 3

8 resolve 2 and 7

9 resolve 8 and 6 
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3 Procedures for Testing Satisfiability

 

 The separated inference rules presented in the previous section depend on proce-
dures which perform two actions. These are (1) a test for satisfiability of restrictions;
and (2) a test for entailment of the restriction of any formula which has an empty matrix.
This section describes procedures that test satisfiability of restrictions.  We identify a
class of procedures that can be used for this purpose.

 When we have a procedure for deciding satisfiability of a conjunction of literals
in a theory , we use separated inference rules to prove a theorem 

 

Φ

 

 in a theory 

 

T

 

.
The clauses of 

 

T-T

 

1

 

 

 

and 

 

¬

 

Φ

 

 are separated relative to 

 

T

 

1

 

, and the procedure is used at
each inference step to test the satisfiability of derived restrictions.

The restrictions are conjunctions of literals possibly containing variables. Even
though these restrictions may have variables, it is possible to use 

 

ground literal satisfi-
ability procedures

 

 

 

(GLSPs) 

 

to determine satisfiability of the conjunctions in restric-
tions. We do this by replacing the variables in the restrictions by new constant symbols.
The fact that we can use GLSPs to determine satisfiability here is established by Theo-
rem 3.1.

 

Definition 3.1 (Ground L iteral Satisfiability Procedure)

 

 A 

 

ground literal satisfiabil-
ity procedure for a theory T

 

 is a procedure that decides whether or not a conjunction of
ground literals 

 

F

 

 is satisfiable in 

 

T

 

. The language of 

 

F

 

 must be the language of 

 

T

 

 but may
be extended by a collection of uninterpreted function symbols (including constants).

 

Theorem 3.1 (Applicability of GLSPs)

 

 If 

 

P

 

 is a GLSP for a theory 

 

T

 

1

 

, 

 

P

 

 can be used
to decide the satisfiability in 

 

T

 

1

 

 

 

of the restriction of any clause separated relative to 

 

T

 

1

 

.

 

Proof:

 

 Let  be a clause separated relative to 

 

T

 

1

 

. Let 

 

x

 

1

 

,...,

 

x

 

n

 

 be the
variables in . Let 

 

σ

 

 be the substitution  , where the 

 

c

 

i

 

 are
new uninterpreted constant symbols. Replace the restriction of 

 

C 

 

with
.

We show that (a)  is satisfiable just in case  is and
(b) the satisfiability of 

 

C 

 

implies the satisfiability of
. Note that a conjunction of equalities con-

structed in this fashion is always satisfiable. Hence, we can replace any separated
clause 

 

C

 

 with the clause  and decide the satis-
fiability of the restriction of such a clause by deciding the satisfiability of the ground
conjunction .

(a) Since  is the generalization of a subconjunction of
, if   is satisfiable, 
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is satisfiable. Now suppose   is satisfiable in a model 

 

M

 

 under the variable assign-
ment 

 

I

 

. Extend 

 

M

 

 to 

 

M

 

*  which interprets each 

 

c

 

i

 

 the same as 

 

I

 

 assigns 

 

x

 

i

 

. Then
. 

(b) If  C is satisfiable, either 

 

C

 

2

 

 is satisfiable or  is unsatisfiable. If 

 

C

 

2

 

 is satisfiable,
then  is satisfiable. Otherwise, since   is
satisfiable just in case  is,

 is also unsatisfiable. []
The fact that any GLSP can be interfaced to the separated inference rules is a for-

tunate situation because there appear to be a large number of useful GLSPs. The argu-
ment supporting this claim has three parts. First, a significant number of GLSPs have
been identified and published  [11][12][5]. Second, other work reports on techniques for
extending some GLSPs that have been identified. Third, there are techniques that enable
GLSPs to be combined.

Nelson & Oppen in [12] show how to extend a GLSP for the theory of equality
with uninterpreted function symbols to the theory 

 

T

 

LISP

 

.

 

 Their procedure can be integrat-
ed with our theorem prover and used to check satisfiability of restrictions in the running
example, e.g., the restriction of the clause derived in step 9 of Example 2.1

can be checked for satisfiability in the theory of 

 

LISP

 

 list structure using Nelson & Op-
pen’s procedure considering all the variables to be constants.

We have used techniques similar to Nelson & Oppen to construct several new pro-
cedures by extending a GLSP for congruence closure (one such procedure is described
in Section 5). Also, [8] gives techniques for constructing GLSPs based on congruence
closure for conjunctions of ground literals containing predicates. The essential idea is to
introduce boolean constants 

 

True

 

 and 

 

False

 

 and to represent 

 

 

 

as
 and  as . Then, if the congru-

ence closure graph of a conjunction 

 

F 

 

contains 

 

True=False

 

, 

 

F 

 

is unsatisfiable.
Finally, both [11] and[16] describe techniques for combining GLSPs with disjoint

languages into a GLSP for the union of these languages. Much work has been done re-
cently on the closely related topic of combining decision procedures for equational the-
ories [1].

Hence, we are in the convenient situation of being able to combine GLSPs to cre-
ate a GLSP for a restriction theory. Given a theory 

 

T

 

, we can design from components
a decision procedure for a restriction theory. (See [10] or [14] for examples of tech-
niques for automatically designing decision procedures from components.)

 

4 Deductive Synthesis Decision Procedures

 

This section shows that if a GLSP has the additional property of being 

 

closure-
based

 

 it can be used not only to check satisfiability but also to check for entailment and
to produce witnesses for deductive synthesis. All of the procedures mentioned in Sec-
tion 3 as well as all of the procedures we have used in our work on deductive synthesis
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are closure based.
As discussed in Section 2, producing a closed separated refutation requires deci-

sion procedures for computing both satisfiability and entailment of restrictions. For the
entailment problem, we need decision procedures that check the entailment of clauses
containing existentially quantified variables and possibly also to produce witnesses for
those variables. We call such procedures 

 

literal entailment procedures

 

.

 

Definition 4.1 

 

A 

 

literal entailment procedure (LEP) 

 

for a theory 

 

T

 

 is a procedure that
decides for a conjunction of literals 

 

F

 

 in the language of 

 

T

 

 (possibly containing free vari-
ables) whether or not 

 

T

 

|=

 

∃

 

F.

 

While in general the satisfiability procedure and the entailment procedure for a re-
striction theory are separate procedures, we have found that closure-based GLSPs can
also be used as LEPs.

 

Definition 4.2 (Closure-based satisfiability procedure) 

 

A 

 

closure-based 

 

satisfiability
procedure for a theory 

 

T 

 

computes satisfiability in 

 

T 

 

of a conjunction of formulas 

 

Φ

 

 by
constructing a finite set 

 

Ψ

 

 of ground consequences of 

 

T

 

∪{

 

Φ

 

}

 

 such that 

 

Ψ

 

 contains a
ground literal and its negation just in case 

 

Φ

 

 

 

is unsatisfiable in 

 

T

 

.
The congruence closure procedure is a closure-based satisfiability procedure for

the theory of equality with uninterpreted function symbols. It constructs a congruence
closure graph [8] and in so doing computes a finite set of ground consequences of a con-
junction of input ground equalities. As new equalities are added to a conjunction, new
nodes representing terms are added to the graph and/or congruence classes are merged.
Many GLSPs that extend congruence closure are also closure-based satisfiability proce-
dures.

A closure-based GLSP with theory 

 

T 

 

can be used as a LEP as follows. Given a con-
junction of literals 

 

F

 

(

 

x

 

1

 

,...,x

 

n

 

), where the 

 

x

 

i

 

 are the existentially quantified variables in

 

F

 

, the procedure is used to check the satisfiability of 

 

T

 

∪

 

{

 

F

 

(

 

c

 

1

 

,...,c

 

n

 

)}

 

, 

 

where the 

 

c

 

i

 

 are
new constant symbols substituted for the corresponding variables.

 

 

 

Since the procedure
is closure based, in computing satisfiability, it computes consequences of

 

T

 

∪

 

{

 

F

 

(

 

c

 

1

 

,...,c

 

n

 

)} . If consequences of the form 

 

c

 

i

 

=

 

t

 

i

 

 are computed for all 

 

i
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1

 

,...,

 

n

 

, the pro-
cedure is run again on 

 

¬F

 

(

 

t

 

1

 

,...,t

 

n

 

).

 

 If this clause is unsatisfiable in 

 

T

 

, witnesses have
been identified for the original variables 

 

x

 

i

 

. The idea of the first call to the procedure is
to determine if in every model of 

 

T

 

∪

 

{

 

F

 

(

 

c
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,...,c

 

n

 

)} , 
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i
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. The idea of the second
call is to determine if 

 

F

 

(

 

t

 

1

 

,...,t

 

n

 

)

 

 

 

is true in every model of 

 

T

 

, i.e., 

 

T

 

|=

 

∃

 

F.

 

We illustrate how a closure-based satisfiability procedure is used as a LEP with
Nelson & Oppen’s GLSP for 

 

T

 

LISP

 

.

 

Example 4.1

 

 In step 10 of example 2.3, it must be shown that the existential closure of

is a theorem of 

 

T

 

LISP

 

. First, the Nelson & Oppen GLSP is used to check the satisfiability
of this conjunction (assuming that the variables are uninterpreted constants).  In doing
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so, the procedure computes the following additional equalities. From 
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), we
get 
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Hence, 
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) and 
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What the procedure has shown is that if we treat the variables in the above formula

as constants, in every model of 
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 that is also a model of this formula,
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)). That is, that  is
satisfiable in the theory 
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 and  that 
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 . Next, to establish that 
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)), is a witness for
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 and that 
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)) is a witness for 
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, the  procedure is used to check the unsatisfi-
ability of .

 

 

 

Since this is a disjunction that is unsatisfiable just in case all of
its disjuncts are, each literal of 

 

 

 

can be checked separately. 
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 is unsatisfiable, 

 

 

 

and 
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|=
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F.

 

 We have exploited the fol-
lowing fact in this analysis.

 

Lemma 4.1 

 

Let 

 

F

 

(
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1

 

,...,c

 

n

 

) be a conjunction of ground literals that is satisfiable in a the-
ory 

 

T. 

 

Further, suppose that the constant symbols 

 

c

 

1
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...,c

 

n

 

 do not occur in 

 

T

 

. If
 

 

 

 

where each 
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 is a term not containing any
of the 

 

c

 

j

 

s, .

 

Proof: 

 

Suppose . Then, by the de-
duction theorem, ,  Also, since the 

 

c

 

i

 

 do
not appear in 

 

T

 

, the first-order law of universal generalization gives us
.[]

Lemma 4.1 gives us license to use a GLSP to find potential witnesses for existen-
tially quantified variables, i.e., terms that make 

 

F

 

 true in every model of 

 

T

 

∪

 

{

 

F

 

} . The
GLSP is then used to check that these potential witnesses are, in fact, witnesses, i.e., that
they make 

 

F

 

 true in every model of 

 

T

 

.
We have used the separated refutation system in the context of deductive synthesis

where we are only interested in constructive proofs in which witnesses have been pro-
duced  for existentially quantified variables in a theorem. In this context, decision pro-
cedures may be required to produce witnesses. Closure-based GLSP have an added
benefit in deductive synthesis, namely that such a GLSP establishes that the existential
closure of a restriction is a theorem by constructing witnesses. These witnesses can be
extracted to produce programs in deductive synthesis. For example, in proving the the-
orem  in example 2.3, the Nelson & Oppen GLSP
produces witnesses for 
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. These are 
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respectively, which are the synthesized programs for 
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) under the as-
sumption that 
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≠
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 and 
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nil

 

.
Thus far in our deductive synthesis work, all the GLSPs we have developed can be

used to generate witnesses in this manner. 
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5 Amphion/NAIF Decision Procedures

 

This section discusses the implementation of procedures for Amphion/NAIF. Am-
phion/NAIF is a deductive-synthesis system that facilitates the construction of programs
that solve problems in solar system mechanics. Programs generated by Amphion/NAIF
consist of straight-line code using assignment statements and calls to elements of the
SPICE subroutine library. The SPICE library was constructed to solve problems related
to observation planning and interpretation of data received by deep space probes.

An Amphion domain theory has three parts: an abstract theory whose language is
suitable for problem specifications, a concrete theory that includes the specification of
the target components, and an implementation relation between the abstract and con-
crete theories. Specifications are given in the abstract language, and programs are gen-
erated in the concrete language. Abstract objects are free from implementation details.
For example, a point is an abstract concept, while a FORTRAN array of three real num-
bers is a concrete, implementation level construct.

At the abstract level, the Amphion/NAIF domain theory includes types for objects
in Euclidean geometry such as points, rays, planes, and ellipsoids, augmented with as-
tronomical constructs such as planets, spacecraft, and time. The abstract functions and
relations include geometric constraints such as whether one geometric object intersects
another. The concrete portion of the Amphion/NAIF domain theory defines types used
in implementing a program or in defining representations, and it defines the subroutines
and functions that are elements of the target subroutine library.

The implementation relations are axiomatized through abstraction maps using a
method described by Hoare [9].These are maps from concrete types to abstract types.
The function 

 

abs

 

 is used to apply an abstraction map to a concrete object. For example,

 

abs

 

(

 

coordinates

 

-

 

to

 

-

 

time

 

(

 

TS

 

), 

 

tc

 

) denotes the application of the abstraction map 

 

coordi-
nates-to-time

 

, parameterized on the time system 

 

TS

 

, to the time coordinate 

 

tc

 

, i.e., this
term maps a concrete time coordinate 

 

tc

 

 in time system 

 

TS

 

 to an abstract time.
In the NAIF theory, many implementation relations are axiomatized as equalities.

For example, an abstract time may be encoded by any of several data representations
such as Julian date or Calendar date. An example of an equality axiom relating two con-
crete objects to a single abstract object is 

This axiom says that two abstract times are equivalent. The first abstract time is
derived from time coordinate 

 

tc

 

 in time system 

 

ts

 

1

 

. The second abstract time is the time
conversion function 

 

convert-time

 

  applied to the first time coordinate to convert it from
one system to another. This axiom is used to introduce invocations of the 

 

convert-time

 

function into a synthesized program. These synthesized code fragments convert time
data from one representation to another.

The terms in a specification usually do not match perfectly with axioms in the do-
main theory. Inference steps are required to generate matching terms. When these infer-
ence steps include resolution or paramodulation, choice points are introduced into the
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theorem prover’s search space.  For example, a specification may state that an input time
is in the Julian time system, but it may require that the time be in the Ephemeris time
system for the appropriate inferences to carry through. The theorem prover will apply
the 

 

convert-time

 

 axiom (using paramodulation) to convert the input time coordinate
from Julian to Ephemeris, then apply the appropriate inferences. Each paramodulation
represents a multi-branched choice point in the search space.  As a practical matter, this
branching usually causes a combinatorial explosion in theorem proving. One class of
decision procedure interfaced to the theorem prover in Amphion/NAIF performs repre-
sentation conversions, like the time conversion just described, without search. In Am-
phion/NAIF, inserting decision procedures to eliminate choicepoints has a dramatic
speedup effect.

 

5.1 A Procedure for Time Conversion

 

The procedure for time conversion is the simplest example of a representation con-
version decision procedure used in Amphion/NAIF. When this procedure is interfaced
to the theorem prover, the domain theory is separated relative to the NAIF subtheory of
time. For example, an axiom such as

is separated, yielding

The decision procedure implements congruence closure to compute the conse-
quences of a set of equalities some of which are between abstract time terms, i.e., it is
used on the restriction of clauses like the one above. The congruence closure algorithm
computes the consequences of a conjunction of ground equalities by maintaining equiv-
alence classes of terms in a congruence closure graph [8]. As described in Sections 3
and 4, for this purpose, the variables in the restriction are treated as constants. These
constants are specially marked to distinguish them from constants appearing either in
the domain theory or an input specification. The equivalence classes of two terms are
merged either when an equality between those terms is introduced or when two terms
are found, by congruence, to be equal, i.e., if 
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.

 

 

 

Hence, the equalities involving 

 

abs

 

 terms appearing in the
restriction of a clause and the consequences of those equalities are represented in a con-
gruence closure graph, rather than as literals of a clause.

The time conversion procedure is, in fact, an extension of congruence closure be-
cause it also finds witnesses for some of the specially marked constants (those that were
substituted for variables) in 

 

abs

 

 terms. When a term in an equivalence class of 

 

abs

 

 terms
is ground, witnesses are produced for variables in the other terms in the class when those
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other terms contain (non variable) time systems. There are two cases. Case 1 is when
the time systems in the two 

 

abs

 

 terms are the same. In this case witnesses are generated
based on the domain theory axiom

Case 2 is when the time systems are different. These witnesses are produced based
on the domain theory axiom

For example, if there is an equivalence class containing the term 
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), the procedure produces the witness 
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) for 
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. 
When the 

 

convert-time

 

 procedure is used in Amphion/NAIF, the axioms above are
no longer needed. Hence, they are removed from the domain theory.

 

5.2 A Proof Using the Time Conversion Procedure

 

The axiom shown below indicates how a sum of two times is computed. In this ax-
iom, the final time is computed as a sum only if both times are in Ephemeris represen-
tation

The operation of the 

 

convert-time 

 

procedure can be demonstrated by supposing
SNARK is given the following specification.

This specification asks: when given two distances, one represented in JULIAN
format and one in EPHEMERIS format, find the sum of those distances in UTC format.
The first step in the proof of this specification is to negate the conclusion and generate
the Skolem form. Then 

 

jt

 

 and 

 

et

 

 become new Skolem constants, and 

 

ut

 

 becomes univer-
sally quantified. This formula separated relative to the NAIF theory of time is:

The conjunction in the antecedent is the restriction which is stored as a congruence
closure graph. The disequality is the matrix available to SNARK's extended inference
rules. SNARK unifies the matrix of the above formula with the complementary literal
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in the (now rewritten) 

 

sum-of-times

 

 axiom, shown below.

The unifier   is obtained. The matrix of the resolvant
is the empty clause. The unifier is then passed to the 

 

convert-time

 

 procedure which now
attempts to merge the closure graphs of the two restrictions. This generates the follow-
ing three equalities:

Since 

 

jt

 

 and 

 

et

 

 are constants, the procedure determines that a binding can be gen-
erated for variables 
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 and 
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. The procedure then generates the witness 

 

U

 

2

 

←

 

convert-
time

 

(

 

JULIAN, EPHEMERIS, jt

 

). Also the binding 
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 is generated for the second
equality literal.

Finally, the variable 

 

ut

 

 is bound to the term 
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EPHEMERIS, UTC,
sum-time-coords
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convert-time
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)). This term is the answer
term bound to the existentially quantified variable in the original specification. This
term is a program that converts 

 

jt

 

 to ephemeris time, adds this converted time to 

 

et

 

 (al-
ready in the EPHEMERIS time system), and converts the resultant time to the UTC time
system.

 

6 Implementation

 

We have augmented the SNARK resolution theorem prover with the separated in-
ference rules described previously. We have also added a set of decision procedures to
SNARK specifically for Amphion/NAIF and used the resulting system to generate pro-
grams. This section describes the results of this work. This work has been motivated by
research into Meta-Amphion; however, a detailed discussion of Meta-Amphion is out-
side the scope of this paper. We believe that the work presented here is of general inter-
est in its own right because it shows a new way of accelerating deductive synthesis
engines, specifically full first-order refutation-based theorem provers, using decision
procedures. 

Our experience with Amphion/NAIF has been that the performance of the theorem
prover has been an important consideration in the maintenance of the system. As with
all general purpose theorem provers, SNARK is subject to combinatorial explosion in
the search for a solution to a problem. As shown in Figure 1, the search space for all but
the smallest problems is unacceptable when using an untuned system. 

A great deal of time and effort has been devoted to tuning Amphion/NAIF. Figure
1 shows that the hand tuning (done over the course of a year and a half by an expert in
deductive synthesis) was very effective in reducing the synthesis time, frequently reduc-
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ing the time from hours or days to minutes. The central problem has not been the lack
of success in tuning Amphion/NAIF; it has been the cost in time and effort required to
tune the system particularly after the domain theory has been modified. The goal of
Meta-Amphion is to assist in the construction and maintenance of deductive synthesis
domain theories, and in particular, to assist in tuning declarative domain theories.

In general, a deductive synthesis system is tuned by generating example problems,
observing the system as it attempts to solve the problems, then tuning the system to di-
rect it towards solutions for the example problems. There are two primary methods of
tuning the system: (1) changing the agenda ordering, and (2) reformulating the domain
theory axioms. 

SNARK selects an unprocessed formula from the set of supported formulas, then
applies every applicable inference rule to the formula, possibly constructing many new
(unprocessed) formulas. The agenda-ordering function orders formulas after each infer-
ence step, in effect choosing the next supported formula to be processed.

The original, general-purpose agenda-ordering function sorted formulas on the ba-
sis of the size (number of sub-terms) and the number of abstract terms in the formula.
Thus SNARK favored formulas with fewer abstract terms. It also searched for solutions
with a smaller number of terms before looking at larger terms. (SNARK only completes
its search when a ground, concrete term is found for each output variable.) Since smaller
answer terms represent shorter programs, shorter programs are generated before longer
ones.

The hand-tuned agenda-ordering function weighs each formula according to sev-
eral factors. In addition to the number of abstract terms in a formula, the hand-tuned
agenda-ordering function also counts the number of non-ground convert-time terms.
Formulas with more non-ground convert-time terms appear lower on the agenda. This
prevents SNARK from generating terms such as 

 

convert-time

 

(

 

Ephemeris, Julian, convert-time 

 

(

 

Julian, Ephemeris, tc

 

)).
This term results in the conversion of a time coordinate from the Ephemeris time system
to the Julian time system and back again.

 

3

 

 The agenda ordering function has similar
weighting schemes for other terms for which tuning has been necessary.

When the decision procedures are used, the procedure for  

 

coordinates-to-time

 

collects all the abstract time terms. It delays generating a 

 

convert-time

 

 term until a
ground  

 

convert-time

 

 can be constructed.
We compared the performance of three Amphion/NAIF systems: an untuned sys-

tem with a simple agenda-ordering function; an extensively hand-tuned system; and a
system which uses several decision procedures. The untuned system describes the state
of Amphion/NAIF prior to expert tuning. This is exactly the type of system we expect

 

3.In this case, this formula is rewritten by two rules into an identity. However,
with paramodulation, new variables are introduced. No rewriting occurs since
the new variables do not match. The result is that chains of convert-time terms
may be generated. Each of these terms is then a target for resolution or para-
modulation to generate more formulas, none of which lead to a solution.



 

Meta-Amphion to be given as input. The hand-tuned system was the result of extensive
tuning by a theorem proving expert. Not only was a specialized agenda ordering func-
tion developed, but several of the axioms were reformulated to force the theorem prover
to behave in a particular manner. Such reformulation depends on in-depth knowledge of
the workings of the theorem prover. For the decision procedure system, a set of five de-
cision procedures was written and used. Each of these procedures was interfaced to
SNARK using the inference rules described previously. 

The domain theories for each of these systems consisted of approximately 325
first-order axioms. Many of these axioms are equalities, some of which are oriented and
used as rewrite rules. A series of 27 specifications was used to test these synthesis sys-
tems. These specifications ranged from trivial with only a few literals to fairly complex
with dozens of literals. Thirteen of the specifications were obtained as solutions to prob-
lem specifications given by domain experts, thus this set is representative of the prob-
lems encountered during real-world use. 

As shown in Figure 1, the untuned system showed exponential behavior with re-
spect to the specification size for the number of inference steps (and the CPU time) re-
quired to generate a program. The hand-tuned and decision-procedure-tuned (TOPS)
systems both grew much less rapidly, with the decision-procedure-tuned system grow-
ing at about one third the rate of the hand-tuned system in the number of inference steps
required to obtain a proof, as shown in Figure 2.

The performance of the system using the decision procedures was unaffected by
changing between the simple and sophisticated agenda-ordering functions. This is not
surprising since the decision procedures and the hand tuning both targeted the same in-
ferences, and when using the procedures, the terms counted by the agenda ordering
function are hidden inside the data structures of the procedures.

Although the programs generated using the decision procedures were not always
identical to programs generated without them, for each case we proved that the pro-
grams computed the same input/output pairs. 

 

7  Conclusion

 

A major hindrance to the construction and use of deductive synthesis systems is
the cost associated with constructing and maintaining the domain theories associated
with them. A primary cost of maintaining a domain theory is the cost of tuning the de-
ductive synthesis system to the theory. Our work continues on the Meta-Amphion sys-
tem whose goal is to automatically design specialized deductive synthesis systems from
untuned domain theories. Much of our effort is on techniques to automate the process
of replacing subtheories with automatically generated decision procedures. The deci-
sion procedure design process is one of design from components, where the components
are parameterized procedures. The process involves combination and instantiation. The
component procedures turn out to be closure-based ground literal satisfiability proce-
dures. As described in this paper, we have also found this class of procedures useful in
a new type of hand-tuning of deductive synthesis systems.  We have defined the class



 

of closure-based ground literal satisfiability procedures, introduced extensions of a ref-
utation-based general-purpose theorem prover to enable any procedure in this class to
be integrated with the theorem prover to accelerate deductive synthesis, and proven that
these extensions are correct.

We have shown how we have used the manual decision procedure insertion tech-
nique to accelerate Amphion/NAIF, a system that is in regular use by NASA space sci-
entists. Also, we are using the technique in the development of other “ real-world”
systems such as a system to synthesize three dimensional grid layouts in Computational
Fluid Dynamics and a system to automatically generate schedulers for Space Shuttle
payloads.

 The research methodology we are employing is to manually identify sets of axi-
oms that give rise to combinatorial explosion problems in theorem proving, just as we
do when tuning manually. Then we generalize these problems into problem classes and
create generalized solutions in the form of parameterized decision procedures. These
parameterized procedures are added a library in Meta-Amphion. Meta-Amphion also
has an evolving library of techniques that enable it to analyze a domain theory, identify
instances of problem classes for which it has a decision procedure, and automatically
instantiate the procedure for the problem class. Meta-Amphion also proves that the pro-
cedure is a solution to the specific problem, then modifies the domain theory appropri-
ately. 

In general, the soundness of solutions found using decision procedures very much
depends on the soundness of the procedures themselves. Another ongoing activity in the
Meta-Amphion project is to develop methods for proving the correctness of parameter-
ized decision procedures.
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